ScienceOnline 2010

There has been so much written about ScienceOnline 2010 that for me to try to encapsulate in yet another blog post seems pointless. ScienceOnline 2010 was an “unconference” of folks dedicated to communicating science and science issues through the internet.  It was held at Sigma Xi headquarters in the Research Triangle Park, North Carolina.

The best way for me to post about this conference is to point you to the vast amount of posts.  Perhaps you will discover a new blog to follow.

ScienceOnline 2010 Blog and Media Coverage: http://www.scienceonline2010.com/index.php/wiki/BlogMedia_Coverage/

I’m going to single out A Blog Around the Clock’s post Journalism at ScienceOnline 2010: http://scienceblogs.com/clock/2010/01/journalism_at_scienceonline201.php. He offers a fantastic reading list regarding science journalism.

Understanding scientific uncertainty

People expect a lot from scientists. Preferably ready-made, unambiguous answers, valid for eternity. But because of science’s critical character and rigorous reality checks of hypotheses, different scientists can give different answers to the same questions. If these questions concern cutting edge research, this is more the rule than the exception. Only after years or even decades of extensive checks do some scientific hypotheses make it into the handbooks of science, that are hardly doubted anymore. But even some scientific handbook might get overthrown after some time.

Furthermore, even the best scientists at the time can be terribly mistaken. When American physicist Charles Townes in 1951 started to think about microwave amplification by the stimulation emission of radiation – a maser, the microwave equivalent and predecessor of the laser – Nobel prize winner Isidor Isaac Rabi and Polykarp Kusch, who was yet to win the Nobel prize, told Townes that it was impossible and asked him to stop his research. Luckily Townes didn’t stop and developed the first maser only two years later, which won him the 1964 Nobel prize.

The story repeats itself with the development of the laser. Townes’ brother-in-law Arthur Schawlow, who was also to win a Nobel prize, had predicted that it was impossible to build a laser with ruby as a laser medium. The young Theodore Maiman wasn’t convinced and started his intensive research at Hughes Research Laboratories. The Hughes management however, trusting Schawlow’s prediction, discouraged Maiman’s ruby-research. Maiman stubbornly continued, and in 1960, this year exactly fifty years ago, he demonstrated the first laser…with ruby as a laser medium. The great freedom to doubt the thoughts of even the best scientists led Townes to the maser and Maiman to the laser. Uncertainty in science is a strong stimulus for creativity.

By better understanding the role of uncertainty in science we may better understand what science can and cannot offer society. Uncertainty in science has essentially three roots: in measurements, in data analysis and in models (both conceptual, physical and numerical). Scientists try to get rid of uncertainties as much as possible, but cannot get rid of all of them. Therefore, science is first of all a process that separates the evidently untrue from the possibly true. This is very different from the public perception that science is an encyclopedia of absolutely true facts.

Unfortunately, when people hear scientists saying they don’t know everything, they often conclude that they know nothing, or that one opinion is as good as any other, or that evident blunders in the IPCC-report make the whole report worthless. Uncertain science, however, is something different from bad science. There are degrees in uncertainty, varying from extremely uncertain to virtually certain. Hardly anything in science is absolutely certain. Watch below what physicist and Nobel prize winner Richard Feynman had to say on uncertainty: “It’s much more interesting to live not knowing than to have answers that might be wrong…I don’t feel frightened by not knowing things.”

mu5hp455##3